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to the location in an intensity range rather than the position 
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OPTIMIZATION OF TRAINING SETS FOR 
NEURAGNET PROCESSING OF 

CHARACTERISTIC PATTERNS FROM 
VIBRATING SOLIDS 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

This application continues the prosecution of U.S. Pro- 
visional Application Ser. No. 601404,222 filed Jul. 23,2002. 

ORIGIN OF THE INVENTION 

The invention described herein was made by an employee 
of the United States Government and may be used by or for 
the Government for governmental purposes without pay- 
ment of any royalties thereon or therefor. 

FIELD OF THE INVENTION 

The invention relates to the detection of faults in a 
vibrating solid and, more particularly, to a method using an 
artificial neural network for detecting damage of a vibrating 
solid. Specifically, the invention relates to detecting damage 
of the vibrating solid by the use of a folding technique that 
operatively cooperates with the neural network to increase 
the sensitivity for detection of flaws in the vibrating solid, 
such as a turbine blade. 

BACKGROUND OF THE INVENTION 

Artificial neural networks consist of a set of elements that 
start out connected in a random pattern, and, based upon 
operational feedback, are moldcd into the pattern required to 
generate the desired results. Artificial neural networks are 
used in applications such as robotics, diagnosing, forecast- 
ing, image processing and pattern recognition. 

Artificial neural networks, sometimes simply rcferred to 
as neural networks, are neurons or processing elements 
(PES) grouped in input, hidden, and output layers that 
communicate in parallel via full interconnections of PES 
between layers. The strengths of interconnections are called 
weights. In training sessions of a network, learning is 
composed by a training algorithm and paradigm, causing 
pattern updated adjustments in weight strengths. The train- 
ing algorithm preferably used herein is called Backward- 
Error Propagation (BEP), (sometimcs refcrred to as back- 
propagation) a method of error analysis where perturbations 
put on the weights are distributed in a manner to reduce 
overall network epoch error. All weights of the network are 
dimensions in the domain of the BEP transform (weight 
space). The learning paradigm (convergence to a corrcct 
result) uses a gradient descent method for seeking global 
minima in this weight-diniensional space. 

The network topology is disorganized before training; 
neural pathways are randomized with no associative learn- 
ing. Training data consists of the use of characteristic 
patterns of the object or objects being analyzed. The goal of 
the network is to associate each class of characteristic 
patterns to a dcfincd representation. Learning by the network 
is complete when error in the defined representation is less 
than a prespecified small number. A typical number is less 
than 1% of the defined representation. At this condition the 
network has converged yielding an answer. 

A training record associated with the training of a neural 
network consists of an input and an output. The input is a 
characteristic pattern recorded of a vibrating structure 

2 
excited to vibrate at very low amplitude. The structure is 
excited to vibrate in a normal or resonant mode, and the 
characteristic pattern shows the mode shape. In one method, 
a characteristic pattern is generated using electronic or 

5 television holography. Television holography is available 
commercially in more than one form, and is discussed 
extensively in the literature. 

Neural network processing of characteristic patterns of 
vibrating structures is used routinely for nondestructive 

10 evaluation. The characteristic patterns are generated using 
electronic time-average holography of the vibrating struc- 
ture and are sub-sampled before processing. The lower 
resolution patterns containing a few hundred to a few 
t h o d  pixels are then presented to an experimentally 

15 trained neural network. The neural network is trained to 
detect small changes in the characteristic pattern resulting, 
for example, .from structural changes or damage. 

The neural network electronic-holography combination 
used to detect structural changes and damage has evolved 

*O through several stages. One such current combination is 
experimentally trained and is immune to the laser speckle 
effect. This combination csh be used with cameras that are 
operated at 30 fkmes per second and uses feed-forward 
artificial neural networks (multi-layer penxptrons) very 

25 efficiently. The feed-forward architecture, known in the art, 
is probably the most familiar architecture for so-called 
artificial neural networks and has many benefits to recom- 
mend its usage. 
An artificial neural network is sometimes defined to be 

any processing system that is programmed with a training 
set of exemplars. As a specific example, the feed-forward 
neural network (net) remains compact in software as the size 
of that training set increases; has good noise immunity; and 
can be trained with straightforward algorithms of the back- 
propagation genre. The feed-forward net can process fairly 
large input images, if the number of hidden-layer nodes is 
not too large, and is well suited to processing speckled 
characteristic patterns at 30 frames per second when those 
characteristic patterns contain a few hundred to a few 
thousand pixels. 

Feed-forward artificial neural networks or multi-layer 
perceptrons, known in the art, do have a reputation at times 
for being unable to learn training sets that are deemed 

45 otherwise to be learnable. Nevertheless, it has been known 
for some time that the perhrmance of feed forward artificial 
neural networks can be enhancsd greatly by conditioniug the 
inputs. A proprietary hctional-link net transforms inputs 
mathematically, before subjecting them to the back-propa- 
gation algorithm. Another practice that improves learning is 
to scale the individual pixels of the training exemplars to 
cover the entire input range of the feed forward net. So- 
called &-max tables of the minimum and maximum pixel 
values are used for scaling. Learning of characteristic pat- 

55 terns does improve with positional d i n g ,  but the associ- 
ated neural networks are suwaptiile to over-traiining. Fur- 
thermore, the associated neural networks okten do not 
achieve the sensitivity desired for non-destmctive evalua- 
tion procedures. It is desired that the sensitivity of n e d  

6o networks be improved without sufferiwthe consequences of 
over-training. 

3o 

35 

40 

OBJECTS OF THE INVENTION 

65 It is a primary object of the present invention to provide 
means for neural networks to improve the sensitivity thereof 
by improving the training thereof so as to allow the neural 
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networks to be trained more easily to detect damage of to generate a sub-sampled characteristic pattenq e) deliver- 
s1TUctures, such as vibrating structures. ing the sub-sampled characteristic pastern of the training set 

It is another object of the present invention to provide for to a foldmg routine which scabs the second pixels compris- 
folding routines, which serves to improve the sensitivity of ing the sub-sampled characteristic pattern of the training set 
the neural networks. 5 in accordance with their location in an intensity range and 

It is an additional object of the present invention to providesarepresentative 
provide folding routines, which optimizes the performance record, f )  repeating said 
of feed-forward artificial neural networks for learning and predetermined numbr of training set 
differentiating between the speckled characteristic fiinge delivering the p n x h m u m d  * number of training records to 
patterns generated from electronic holograms of vibrating io an artificial neural network for thereof and provides 
components. a first representative output therefhm. This method further 

Moreover, it is an additional object of the present inven- includes: h) recording two time-average holograms of the 
tion to provide for a folding routine that allows feed-forward vibrating structure serving as a test set and each comprised 
artificial neural networks to achieve the maximum sensitiv- of a first number of pixels; i) providing the tiles serving as 
ity in detecting structural damage from changes in the 15 large pixels predetermined h m  the geomeby of the vibrat- 
vibration mode shapes visualized with characteristic pat- ing structure; j) sub-sampling each of two time-average 
terns collected from the entire visible surface of a vibrating holograms of the test set within said large pixels to extract 
structure being analyzed. a second number of pixels for each of the two time-average 

It is a further object of the present invention to provide a holograms; k) subtracting corresponding second pixels of 
neural network operatively cooperating with the folding 20 each of the two time-average holograms of the test set to 
routine and handling structural finite-element models that generate a sub-sampled characteristic pattern; 1) delivering 
are combined with models of laser speckle effect and a the sub-sampled characteristic pattern of the test set to a 
model of a electronic hologram to generate characteristic folding routine which scales the second pixels comprising 
pattenis, wherein these patterns are used to train artificial the sub-sampled characteristic pattern of the test set in 
neural networks. 25 accordance with their location in an intensity range and 

providing a representative output thereof serving as a train- 
ing record; m) repeating said steps h), i), j), k), and 1) until 
a predetermined number of test set records is obtained, n) 

The present invention is directed to artificial neural net- delivering the tea set records to the trained artificial -1 
works that are used to process holography-generated char- 30 network to provide a second representative output &-om the 
acteristic patterns of vibrating structures and operatively trained artificial neural network, and 0)  compariog the first 
cooperate with a folding routine which conditions the char- representative output with the representative output 
acteristic patterns of the vibrating structures in the training to d e t e d e  if a difference ofa  p r e d e t d e d  mount exists 
of the neural network so as to increase the sensitivity of the therebetween, the difference representing detection of dam- 
neural network. 

In one embodiment, a method is provided for training an In a further embodiment, a lnetbod of training is provided 
artificial neural network for detecting damage of a vibrating for an artificial neural netwok for & w i n g  damage of a 
structure. The method comprises the steps oE vibrating calculated structure. The method comprising the 

a) recording two time-average holograms eachcomprised steps of: a) calculating the characteristic pattern of a vibrat- 
of a first number of pixels; (b) providing tiles serving as 40 ing structure and serving as a training pattern; b) delivering 
large pixels predetermined from the geometry of the vibrat- the characteristic pattern to a folding routine which scales 
big structure; c) sub-sampling each of two time-average the pixels comprisimg the chara&tic pattern in war- 
holograms within the large pixels to extract a second number daaee with theit location in an intemity range and providing 
of pixels for each of the two time-average holograms; d) a representative output thereof serving as a training md, 
subtracting corresponding second pixels of each of the two 45 c) repeating said steps a) and b) until a ptedetermined 
time-average holognams to generate a sub-sampled charac- number of training records is obtained, and d) delivering the 
tcristic pattcm; e) delivering the sub-sampled characteristic predetermined number of training m& to an artificial 
pattern to a folding routine which scales the second pixels neural network for training thereof. This calculated charac- 
comprising the sub-sampled characteristic pattern in a m r -  teristic pattern includes a finite-ebent model, a model of 
dance with their location in an intensity range and providing 50 laser speckle effect, and sensitivity vector compensation. 
a representative output thereof serving as a training recod, h a still fiuther embodiment, a method k proviw for 
f) repcating the steps a), b), c), d) and e) un?il a predcter- using an artificial neural network for detecting damage of a 
mined number of training records is obtained, and g) deliv- vibrating structure. The method comprises the steps of: a) 
ering the predetermined number of training records to an calculating the characteristic pattern of a vibrating structure 
artificial neural network for training thereof; 55 and serving as a training pattew b) &livering the charac- 

In another embodiment a method is provided for using an teristic pattern to a folding routine which scales the pixels 
artificial neural network for detecting damage of a vibrating comprising the characteristic pattern in accordance with 
structure. The method comprises the steps of: their location with their location in an intensity range and 

a) recording two time-average holograms of a vibrating provides a representative output thereof serving as a training 
structure serving as a training set and each comprised of a 60 record, c) repeating the steps a) and b) until a predetermined 
first number of pixels; b) providing tiles serving as large number of training records is obtained; and d) delivering the 
pixels predetermined from the geometry of the vibrating predetermined number of training records to an artifi~al 
structure; c) sub-sampling each of two time-average holo- neural ndwork for training thereof and providing a first 
grams of the training set within the large pixels to extract a representative output thereh. This method further com- 
second number of pixels for each of the two time-average 65 prises: e) calculating the characteristic pattern of a vibrating 
holograms; d) subtracting corresponding second pixels of structure serving as a test pattern of a test set; f) delivering 
each of the two time-average holograms of the training set the test characteristic pattern of the test set to a folding 

SUMMARY OF THE INVENTION 

35 age to the vibrating structure. 
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routine which scales the pixels comprising the test charac- 
teristic pattern of the test set in accordance with their 
location in an intensity range and provides a representative 
output thereof m i n g  as a training recod, g) repeating said 
steps e) and f )  until a predetermined number of test set 
records is obtain&, h) delivering the test set records to the 
trained artiEcial neural network to provide a second repre- 
sentative output from the trained artificial neural netwok, 
and i) comparing said first representative output with the 
second representative output to determine if a difference of 
a predetermined amount exists therebetween, the difference 
representing detection of damage to the vibrating structure. 

BRIEF DESCRIPTION OF THE DRAWINGS 

Features and advantages of the invention, as well as the 
invention itself, will become better understood by reference 
to the following description when considered in conjunction 
with the accompanying drawings, wherein like reference 
numbers designate identical or corresponding parts thereof 
and wherein: 

FIG. 1 is a block diagram related to one embodiment of 
the present invention; 

FIG. 2 is a holography generated pattern for a cracked 
blade, 

FIG. 3 is a sub-sampled pattern of the characteristic 
pattern of FIG. 2, whcrein the resolution has been reduced 
by a factor of about IO; 

FIG. 4 illustrates a feed-forward neural network having a 
three (3) layer architecture; 

FIG. 5 illustrates vibration modes covering a region of a 
suspicious structural integrity between four boltholes of the 
associated structure; 

FIG. 6 illustrates a sub-sampled pattern of part of one of 
the regions of FIG. 5 and also illustrates a zero amplitude 
condition thereof; 

FIG. 7 illustrates a sub-sampled mode related to a par- 
ticular solid structure of the same region as in FIG. 6; 

FIG. 8 is a block diagram related to another embodiment 
of the present invention; 

FIG. 9 illustrates a blade, which may serve as a vibrating 
structure related to the present invention; 

FIG. 10 illustrates a finite-element node-pattern of the 
blade of FIG. 9; 

FIG. 11 illustrates a one (1) fold or absolute value 
associated to the folding routine of the present invention; 

FIG. 12 illustrates a three-(3) fold normal contrast trans- 
formation associated with the folding routine of the present 
invcntion; 

FIG. 13 illustrates a three-(3) fold and a reverse contrast 
transformation associated with the folding routine of the 
present invention; 

FIG. 14 is composed of FIGS. 14A, 14B, and 14C, 
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6 
folding routine of the present invention for an excitation 
amplitude of 64.0 waves and a crack-dect amplification 
e1.0. 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENTS 

Referring to FIG. 1, there is shown a block diagram of a 
method 10 of the present invention that uses an artificial 
neural network for detecting structural damage of a vibrating 
structure 12. The method 10 is particularly suited to provide 
training for the neural network and involves a training 
record. A training record consists of an input and an output. 
The input is a characteristic pattern recorded of a Vibrating 
structure 12 excited to vibrate at very low amplitude. The 
structure 12 is excited to vibrate in a normal or resonant 
mode, and yields a mode shape. A hologram pair 16 is 
generated using electronic or television holography set-up 
equipment 18. Television holography set-up equipment 18 is 
available commercially in more than one form as is known 
in the art. 
As used herein, mode shape is meant to represent the 

vibration-displacement amplitude distribution of a structure 
vibrating in a normal mode or to represent the accompany- 
ing characteristic pattern. Characteristic patterns are meant 
to represent the Bessel friige patterns of time-average 
holography or the sinusoidal fringe patterns of short-double- 
exposure holography. Zero-amplitude condition is meant to 
represent a vibration-displacement-amplitude of zero. Inde- 
pendent speckle-pattern-per-mode is meant to represent a 
speckle pattern that is uncorrelated with another speckle 
pattern of the same mode. Speckle-pattem-immunity is 
meant to represent the insensitivity of the output of a neural 
network to variations in the speckle pattern. Cross-interfer- 
ence is meant to represent the terms in interference patterns 
containing the arithmetic products of the field amplitudes of 
mutually coherent beams of light. Waves are meant to 
represent light waves or electromagnetic waves, and a 
number such as 0.8, which is considered herein as a degrad- 
able classification index, represents the training output of an 
output node of a neural network for an undamaged structure. 
This number decreases for a trained net as damage occurs. 

In general, the method 10 provides a training set of 
television-hologram or electronic-hologram pairs 16 of the 
vibrating structure 12 comprised of a first number of pixels. 
The training set, as well as the test set to be described, 
comprise two time-average holograms, which typically dif- 
fer by a reference-beam phase shift, known in the art, of x 
radians having a typical value of 180 degrees. The time- 

50 average holograms are typically recorded at a charged- 
coupled-device (CCD) camera resolutio~ typically 64Ox 
480 pixels (307,200 pixels). Similarly, the method 10 
provides a test set of television hologram pairs 16 of the 
vibrating structnre 12 comprised of the same number of 

55 pixels as the training set. The method then delivers the respectively show&g the training emr, test error, and per- 
Cellta&e error rate involved in the performance of the folding & h g  set of b]o& p& 16 to a sub-sampling m u h e  
routine for a excitation amplitude of 0.5 waves and a 22 80 as to &e first number of pixels thereof to a 
crack-effect amplification M.1;  second number of pixels. 

FIG. 15 is composed of FIGS. 15A, 15B, and 15C, In the practice of this invention for the sub-sampling 
respectively illustrating the training error, test error, and 60 routine 22 records two timeaverage holograms at CCD 
percentage error rate associated with the performance of a camera resolution: trpically 640x480 (370,200) pixels, 
folding routine of the present invention for an excitation although higher resolution cameras having more pixels may 
amplitude of 1 .O waves with a crack-effect amplification be used. The holograms differ by the referencebeam p b s e  
f=l.O; and shift of x radians. In genend, pairs of holograms 16 are 

FIG. 16 is composed of FIGS. 16A, 16B, and 16C, 65 sub-sampled and the pais of samples are subtracted, before 
respectively illustrating the training error, test error, and a characteristic pattern 24 appears at the output of sub- 
percentage error rate associated with the performance of the sampling routine 22. More particularly, the practice of this 
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invention sub-sampies the two holograms within the large 
pixels of tiles to extract a few thousand first-pixel pairs. The characteristic patterns of vibrating 
large-pixel grid is determined from the geometry of the destructive evaluation. A fdl resolution pattem 24, such as 
object being inspected, such as the vibrating structure 12. that shownin FIG. 2 for acrachd fan blade, generatedusing 
Then the practice of the invention subtracts pixels within the 5 electronic timeaverage 
few thousand pairs of 6rst pixels to yield a characteristic ture are e f f i  
pattern consisting of a few thousand pixels. That way, the cessing by the 
practice of the invention does not have to evaluate 370,200 preferably used for visualization 
differences of the first pixels and then keep only a few pattern thereof is not actuslly sub 
thousand to be used as inputs to the ne& net. Sub-sampling io The sub-sampling routine 22, p 
is done at random coordinates within the large pixels. The vides a lowex resolution pattern containing a few hundred to 
geometry of the object being analyzed has coordinates of the a few thousand pixels, such as that shown in FIG. 3, as a 
first pixels within tiles and the coordinates are set by a representation 34 of the cracked fan blade of PIG. 2. 
random number generator in a manner known in the art. Sub-sampling performed by the sub-sampling m u b  22 
Different coordinates are used for each sub-sampled training 15 permits rapid recording of a &e number of independent 
record. When the practice of the invention is used from the speckle patterns for each pattern 16, since there are many 
model-generated patterns to be described hereinafter, there fill-resolution pixels within a large pixel. It is known that 
is no need to compute the patterns except at a few thousand neural networks, such as neural network 30, become insen- 
points. Therefore sub-sampling is not necessary and the sitive to the &tails of the speckle pattern, if uncorrelated 
pixels are delivered directly to a folding routine to be 20 speckle patterns, equal in number to 10 pen?ent of the 
described hereinafter. Further, for model generated patterns number of Iage pixels, are used to train the neural network 
the characteristic patterns is calculated directly eliminating to recognize each pattern. More particularly, to achieve 
the need of holograms. desired results, it is desired that the feed-forward network 30 

The training set of holography generated characteristic be insensitive to the details of the speckle patterns. Specifi- 
pattern 24 having a second number of pixels are then 25 cally, it is desired that the feed-forwd network 30 be 
delivered, via signal path 24 to a folding routine 26, and sensitive to changes in characteristic patterns 24 at the 
which is of particular importance to the present invention, to output of sub-sampling routine 22. The folding routines 26 
be further described hereinafter, which scales the pixels in perform this function by increasing the sensitivity of the 
accordance with their location in an intensity range and feed-forward network 30 to changes in characteristic pat- 
provides a representative output thereof which is delivered, 30 terns 24. More particularly, the present invention provides 
via signal path 28, to a neural network 30, preferably of a the folding routine 26 to further condition the characteristic 
feed-forward type. The feed-forward network 30, in patterns 24 before presenting the characteristic pattern 24 to 
response to the scaled pixel output provided by a folding the neural network 30 to achieve the desired sensitivity. The 
routine 26, yields a fist output on signal path 32. neural network 30 is preferably a feed-forward type having 

routine 26) is developed, then the process is repeated until The method 10 is particularly useful for a non-destruc- 
a predetermined number, to be further described hereinafter, tive-evaluation N E )  providing improved learning perfor- 
of training sets or records are obtained. This repeat process mance of the feed-forward new4 network 30. The method 
is also used to obtain a predetermined number of test sets or 10 is used to introduce the appropriate training-record 
records. These predetermined number of training records are 40 format consisting of a speckled characteristic pattern as 
then delivered to the neural network 30 for training thereof. input and a so-called degradable classilkation index (DCI) 

The method 10 then delivers the test set of television as output. Also, a structural model for the vibrating structure 
hologram pairs 16 to the sub-sampler routine 22 so as to 12 can be used to create training sets containing exemplars 
reduce the first number of pixels contained in the test set of with accurately known structural changes or damage. 
holography generated characteristic patterns to the second 45 The neural network 30 application preferably uses only 
number of pixels. The test set of characteristic patterns 24 two (2) holograms to calculate a characteristic pattern and 
having the second number of pixels is then delivered, via the consequently maintains a high sampling rate. The two 
signal path 24, to the folding routine 26, which scales the holograms differ only by a n relative phase shift of the 
pixels in accordance with their location in an intensity range reference beam, and the arithmetic diffkence betweea holo- 
and provides a representative output thereof which, in turn, SO grams equals the characteristic pattern. It should be noted 
is delivered to the feed-forward neural network 30, via that the feed-forward neural netwMk 30 detects the v a r b  
signal path 28. The feed-forward neural network 30 provides tions in characteristic patterns as damage occurs. 
an output in response to a scaled pixel output of the test set 
of holography generated characteristic patterns. The neural shapes a p p w  on signal 
network compares the first output with the second output 55 shapes are especially semi 
and if the difference of a predetermined amount is deter- are sensitive to internal struehual d & d s  and changes of 
mined, then damage to the vibrating structure 12 has been vibrating strudure 12 b & g  a n a l y d  The o b w i v e  of 
detected. method 10 is to use the neural network30 to detect and flag 

As will be furthcr discusscd, with particular reference to such changes associated with the mode shapes and which 
FIGS. 9-16, the folding routine 26 scales the input pixels 60 represent damage to the vibrating s t r u m  12. The neutal 
according to their location in an intensity range rather than network 30 uses an output to indicate the extent to which a 
lheir position in the chardcterislic pattern, which is accom- mode has changed fmm a training mod@ as a result of 
plished in prior art techniques. Folding greatly increases the structural changes or damage. The output d is a so-called 
sensitivity of the feed-forward neural network 30 for detect- degradable classification index (DCI). The DCI degmdes or 
ing changes in a characteristic pattern, which, intum, greatly 65 changes gradually as the mode shape changes fimn the 
increases the sensitivity to detect damage in vibrating struc- original training shape. The DCI is encoded with 2 or 3 
tures. neural-net output nodes. The simplest example would con- 

The method 10 provides neupal network 30 

M e r  the first training record (output from the folding 35 a three-layer architwture shown in FIG. 4. 

At low spatial fmuenci 
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sist of the output pair (1,O) for a mode that was completely Sixth, tlae testing then d e h d  or m M e d  a value of the 
identical with the training mode and (0,l) for a mode shape output node of the neural network 30 that 
that differed completely from the traioing mode. The output significant change from the training input. The training 
would change gradually between the pair as the mode shape output of mode to be monitored might be (0.8,0.2), the 0.8 
cbanged gradually. 5 or DCl considered to be a 

is convenient when a sigmoid transfer 
Training Procedure Seventh, the testing then 

In the practice of the present invention for one embodi- now trained neural network 30 to stmctwal changes. Typi- 
ment an eight step training and non-destructive testing cally, small point loads were applied at strategic locations on 
procedure was performed and is given as follows: IO the s t m t u m  12, and the response of the neural nStw0I)r 30 

First, about five ( 5 )  vibration modes were generated and Was noted. 
made available on signal path 14 of FIG. 1. These five (5) then selected a new set Of vibration 
vibration modes cover a region of interest of the vibrating modes first in Step ow, and then the Wthg repeated 
structure 12 under test. For example, FIG. 5 shows vibration One through seven and continued hrew& if the 
modes 38,40,42,44 and 46 covering a region of suspicious 15 response Of the neural nelwork 30 Was not SdCienflY 
structural integrity between four (4) bolt holes in a cold plate 
that was being analyzed. It should now be appreciated that the practice of the 

40,42, 44 and 46 together with the zero-amplitude condi- pattrn Of 

lion, and then collected enough, such as 10 percent of the *O vibrating 'tructures that are trained 
second number of pixels, uncorrelated speckle patterns for 
each mode. FIG. 6 shows one speckle-pattern sample 48 for 
the zero-amplitude condition. There were about 2000 large 
pixels for this test; hence, about 200 independent speckle- 
patterns-per-mode were required to train the neural networks 25 

Eighth, the 

sensitive- 

Second, the testing selected h e  (3) of these modes 38, Present invention Provides artificial neupal that 
process ho10m3enerated 

to detect 
induced vibration-amplitudeas~bution qeS* 
finite-elemnt-model*gewra~ 
the conditioning Of inpub to Optimize the 

A further embodiment Of the present jnvention related to 
to heai@e 

Of 
be further described with to 

for specue-panem immunity. The 200 independent speckle 
patterns per mode is 10% of 2000 large pixels, and is the 
number of tm-g records per mode. The m o d  number 

&lows a 52 Of this embodiment Of 
the Present invatb% which is quite similar to the 

lo Of '9 for the calculation Of model- 
(2000) of pixels are considered herein as being large pixels generated training sets than qhena trainins 

30 sets. In the embodiment of 52 of FIG. 8, the characteristic for one embodiment of the present invention. 
patterns 16A are calculated directly. More pat-ticukdy, the 

Third, the testing selected an appropriate feed-forward model characteristic patterns 16Aserving as the sets 
neural-net architecture. In the practice of the invention a are computed fmm a finiteelement model %, a model of the 
3-layer architecture is selected most often, although occa- laser specific effect 56 and a model of the vectar 
sionally a 4-layer neural net architecture will perform best. 35 58, ad are delivered to the folding 
Thc input layer rcquires one node for each pixel. Hence, models amis of 
about 2000 input nodes would be required for the cold-plate mode frequenciies and displacement  butio ions and aTe 
example corresponding to the 200 training records per combined with the hr speckle effect routine %, as well as 
mode, previously mentioned. The number of input nodes is with the 60 to e;enerate 
in the rangc from about 1,000 to about 10,000. The second 4o chcteristic 16A on 62, and the= 
layer or hidden layer contains very few nodes. It's generally 16A, via the folding mMb 26, ~e 
desirable to use as few nodes as possible to minimize the then used to train the artificial 
chance of over training. Typically, ten (10) nodes or fewer, The pradce of the p-nt i n v d o n  operates on the 
such as 6 or 3, are desired for the second layer. The output principle that models 54 chgm in 

tlvee (3) modes. The nodes in the hidden and output layers effectiveness of input conditioning on neural network 3o 
form a linear combination of their inputs and transform this wg. A finite4lement 54 is used Beaerate 
sum non-linearly in a manner known in the art, wherein a vibration displacement &sGbutions for -ed and 

cmcked twisted blades. The size of the crack ef€& is varied sigmoid transfer hnction is used typically. 
Wmitiviv. &@-at && 

amplitude and monitored during a test. More partidarly, butions c o m b i d  with the q m t i k  provided by the 
the testing selected one of the three-(3) modes already model ofthe mnsjtiviq vector 58, and the model ofthe laser 
selected in step two above. This mode is arbitrarily assigned speckle effat  56 to &anerate c h t e f i s t k  
as DCI (I$) or (0.8,0.2). The other two modes a d  the w routed to the folding routine 26, via si& path 62. It 
zero-amplitude condition are then each assigned the I)Cl 55 that the mbaampled mutine 22 of the 
( 4 1 )  or (0.2,0.8). In some previous applications a third mode embodiment of FIG. 1 is not needed in e m w e &  of 
was used that were translated to a color code: green; yellow FIG. 8 because the benefits thmf are b l u w  in the 
and red. In the present application, only a color code of calculated training -rd Thew c h t & & .  ps- 16A 
grccn or ycllow is used. FIG. 7 shows the sub-sampled mode a then traasformed in V & O ~  ways to m g u p e  the effects 
50 that was actually monitored for the cold-plate being 60 of inpa codtio&g on m l - n a  30 m* and =&- 
analyzed. Only part of the mode is visible between the tidy. 
boltholes of the cold-plale. A blade 66 and finiteelement node pattern model 68, 

Fifth, the testing then trained the neural net 30 to a RMS which is part of finite-element model 54 of FIG. 8, are 
error of 0.01 in a manner known in the art. The RMS error respectively shown in FIGS. 9 and 10. Further, as previously 
is computed from the squares of the differences between the 65 discussed, FIG. 2 shows a characteristic pattern 16 and FIG. 
training outputs and the measured outputs for all training 3 shows a sub-sampled pattern 34 fmm the twisted blade 66. 
records. The blade 66 geometry of FIG. 9 is of constant cros-section 

26. 
In general, structural 

vector %, via 

30. 

layer encodes ~IE DCI and n0-1'~ contains two (2) 0' 45 patterns that are su&iently realistic a be used to tegt the 

Fourth, the testing selected the mode to be excited at low 50 in the model to 

16A 

be 
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and has a twist that varies linearly from 0 degrees at the root 
to 30 degrees at the tip. Blade 66 typical dimensions are 
chord, 8.72 cm (3.433 in); maximum thickness to chord 
ratio, 0.037; and span, 15.24 cm (6.0 in). The finite-element 
models 54 have a 20x42 mesh of quadrilateral elements 
along the mid-thickness of the airfoil section. The finite- 
element models 54 tabulate relative vector displacements at 
21x43 finite-element nodes. Only the lowest fresuency 
mode predicted at 199 Hz was used in the practice of this 
invention. The blade 66 material for this prediction was 
6061-T6 Aluminum with a Young’s Modulus of 66.19 Gpa 
(9.6~10 psi), a Poisson’s Ratio of 0.33, and a Mass Density 
of 2712.832 kg/m3 ( 2 . 5 3 6 ~ 1 0 ~  Ibf sec2/in4). 

In the practice of the present invention, two finite element 
models 54 were generated, one with a simulated crack and 
the other without. The crack was located at the root and 
extends from 87% to 100% of chord. The blades 66 were 
structurally modeled as cantilevers by constraining the root 
nodes in all six degrees of freedom, except in the simulated 
crack region. The crack was simulated by releasing the 
constraints for all degrees of freedom at the nodes in the 
crack’s region. 

Another feature of the practice of the present invention is 
called a crack-effect amplification factor f, which was added 
only to check sensitivity of the neural network 30 to crack 
effect. More particularly, the change in displacement distri- 
bution between the cracked and undamaged blades is mul- 
tiplied by this factor. When 6 1 ,  the model is used as is. 
When f>l, the optical effect of the crack is greater than 
predicted by the finite element model 54. When f 4 ,  the 
optical effect of the crack is less than predicted by the 
finite-element model 54. . 

In the practice of the invention it was discovered that the 
finite-element model 54 should be combined with two (2) 
optical effects. First, the laser speckle effects 56 needs to be 
modeled. The siniplest model was chosen where the real and 
imaginary parts oflhe object-beam amplitude were normally 
distributed. Random number generators assured uncorre- 
lated speckle patterns. Second, a sensitivity vector K should 
be included for the sensitivity model 58. The sensitivity 
vector K can be unfavorable for parts of highly twisted 

12 
The mw input data 

actually are signed 
whose individual pixels 

5 Pixcl vehw.4 ooa [Byaf2xK.8] 

Many transformations of this 
are possible, but the practice for 
absolute value, that is i 

r5 values. Then pixel valu 
for visualization and be ted by an eight-bit quantity. 
The 0 to 255 arrangement is applicable for an eight (8) bit 
camera, but other camexas are available having twelve (12) 
bits, which are contemplated by the practice of the pwsent 

2o invention. The same absolute values were used to train the 
neural networks as well. 

A hyperbolic tangent neural transfer function is used in 
the practice of the present invention, rather than a sigmoid 
function for signad inputs typically used in prior art tech- 

25 niques. FIG. 11 shows that the absolute-value transformation 
70 is a folding operation about zero intensity. The X (hori- 
zontal) and Y (vertical) axes of FIG. 11, as well as FIGS. 12 
and 13 respectively illustrate unttansformed charactdstic 
pattern values and the transformed charactexistic pattern 

30 value. It should be noted that inputs to the feed-forward 
network 30 are scaled or normalized in the range [-1,1] or 
[0, 11. In relative terms, intensities in the range [-1,O) are 
transformed into the range [l,O), and intensities in the range 
[0,1] are transformed identically to (411. With reference to 

35 FIGS. l l ,12,  and 13, the raw characteristic patternvalue is 
read on the horimntal axes and the corresponding trans- 
formed value is given on the vertical axes. It was recognized 
that this symmetrical process could be continued. For 
example, FIG. 12 shows a transformation 72 of [-1.0-0.5] 

40 into the range [1.0,0], a transformation of [-0.5,0] into the 
range [O,l.O], a transfonnation of [0,0.5] into the range 
[1.0,0], and a W o n n a t i o n  of [0.5,1.0] into the range 
[0,1.0]. It was discovered that feed-forward netwok 36 
trained with this folded data learned more easily than nets 

blade, but has little effbct on the blade 66 in the practice of 45 with the absolute vatue, & that IearninS; can 
this invention. improve as the number of folds increases. Folding can be 

The fjnite-element model 54 was used to generate one made non-symmetrical and non-uniform. The symmetrical 
pixel €or each poinl and for which the displacement was case requires that the number of folds N be odd. As used 
tabulated. A complication evident fram viewing FIG. 10 is herein, N=O signed characteristic 
that the points are non-uniformly placed. However, this 50 patternsand solute value as shown 
complication was handled by somVare in a manner known in in FIG. 11. FIG. 12 has N=3. Folding can also be aocom- 
the art. panied by a contrast reversal as in FIG. 13 showing a 

As previously mentioned, the present invention provided ~ S f O ~ t i O B  74. In general, tm~formations be 
the folding routine 26 for conditioning training sets opti- defined as having mwmal contrast W h e n  dark fringes remain 

cess characteristic h g e  patterns, such as those present in 
the characteristic patterns 24 of FIG. 1 and the Characteristic Folding, performed by mtine 26 of FIGS. 1 and 8, is an 
patterns 16A of FIG. 8. The folding routine 26 is character- intedty dependent traosformation. For comparhn, when 
izcd by having abrupt changcs in the slopes of its plots in a another transformation, such as that of the prior art, called a 
mamer to be more fully described hereinafter with reference 60 min-max is used, all the intensities in the training set at each 
to FIGS. 11, 12, and 13. The folding routine 26 allows point in the characteristic pattern are tabulated. The W r -  
fwd-forward neurd nelwork 30 to be trained easily to detect ence between the minimum and maximaUn intensities at each 
damage-induced vibration-displac~ent-di~bution point is then used to scale 
changes as small as 10 nanometers. The folding routine 26 of the neural network 30. 
may be first described by further discussing the data entering 65 for a feed-forward net that 
into folding routine, via signal path 24 of FIG. 1 and signal The min-max table, unlike folding, will scale even a dark 
path 62 of FIG. 8. fiinge into the full input range of the neursl network 30. 

mally for training feed-forward neural networks 30 to pro- ss ontrast W ~ S  that z e p ~  intensity be trans- 
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In the practice of the invention, training records that were case yields a training error of 0.036, a test aror of 0.9916, 
treated with the folding routine 26 were used. Training sets and an enur rate of 80 percent. 
were generated for maximum vibration amplitudes of 1.0 FIG. 14 clearly shows not that folding improves the 
wave, 5.0 waves and 64.0 waves, and for crack-effect performance of the feed-forward neural aetwolk 30, but also 
amplification factors f=l .O and f4.1. Recall that f=l .O 5 that folding is absolutely essential for training in some cases. 
refers to the finiteelement model 54 generated cracks, and Neither the signed chmactmistic pattern (Na), nor 
f 4 . l  refers to crack-effects 10 times smaller. One wave absolute value (N=l) used most o h  for training 
equals 1 wavelength of light. Training and test sets were networks in the past, were able to train the neu~al  LWWO& 
generated for 0, 1,3,5,7, and 9 folds, w k  N=O represents associated with FIG. 14. 
the signed, unfolded data. The training and tests sets have IO In the practice of the iavmtion a neural netwok 30 was 
uncorrelated speckle patterns. The N=O case was also used trained for 60.01 and a vibration amplitude of 64.0 waves. 
to train a neural network 30 with min-max scaling for Nine folds (N4) were employed. The neural ne~~ork 30 
comparison. was allowed to develop a minimum RMS training error of 

The same neural-net architecture was used for a11 tests. 0.01. n e  test RMS emry that h the emor associated with 
The feed-forward neural network 30 had an input layer 15 the @st =Oh, Was f&rkY fish (0.2504)7 but the actual 
containing 903 nodes, a hidden layer containing 5 nodes and identification emor rate W a s  O d Y  20 Percent- The 1We t a t  
an output layer containing 3 nodes to encode the XI. One emor was contributed &Y by vahes of the 1-e node 
of the 3 output nodes was intended as a no-decision indi- greater 0.87 ~ s ~ ~ i n s  stfit in largely correct identifica- 
cator, but was not used for this study, where it was clamped tions. Hence, this neural netxvork 30 for this large test error 
to 0.2. The neural network 30 was always trained with 20 trainkg-set Combination Probably Was  Perforing at the 
11,000 back-propagation iterations. After training, RMS limit Of detection. AsYmPtOm ofbpendinp,nml network 
errors were measured for both the trainiig and test sets. The 30 failure is an h m s b 3  teSt-ermr. GmPlete failure occurs 
identification error rate was also noted. An identification When the mining e m r  increases to a 1-e Value such as 
error was declared, if the maximum no& indicated an output 0-25. The h g e o f a  S Q ~ d u r e  12 dekcW in the 
below 0.6. Note that the training value of a maximum node 25 Practice Of the invention would have P* a maximum 
is 0.8. The DCI triple (0.8,0.2,0.2) was used as the training Change in the diSP1we-t d i ~ ~ b u t i o n  Of less than 10 
value for the undamaged case, and the DCI triple (0.2,0.2, nanometers. 
0.8) was used as the training value for the cracked case. The It should now be appreciated that the P m t  invention 
damaged and undamaged structures represent two classes, provides a fold& routine 26, which Breatly improves the 
and for such an application a feed-forward neural network 30 PerfO~ceoffeed-forwardneurslnetwork30 for]-% 
30 is preferably selected having a three layer architecture speckle ~ ~ c t e r i s t i c  training records and is benefi- 
with first, second and third layers. cial for learning to differentiate training records correspond- 

reference to FIG. 14 which is composed of FIGS. 14A, 14B, distribution chga can be 
and 14C, respcctivcly showing a training error, test error, 35 detected by the practice Of the p-t invention at the 
and percent error rate involved during performance of maximumaerence~nt. 
folding for an excitation amplitude of 5.0 waves and a described with 'efixence to pre- 
crack-effect aniplification f4.1. The X and Y-axes of FIG. ferredembodiments andaltemtes It 
14, respectively, illustrate the number of folds and the to the embodiment as 

40 discussed herein will r d i y  suggest themselves to those root-mean-square error. 
skilled in the art upon reading and understanding the 

FIG. 14 clearly shows the effectiveness of folding in d~]&descriptionofthe invention, It is 
improving the performance of a feed-forward neural net- and altemtions insofar as within 
work 30. The neural network 30 does not train at all until the scope of tlae present inventioa 
there are 7 folds, and the 9-fold case performs better than the ~5 
7-fold case. The same result pertains to other combinations 
of crack-effect amplification and vibration aniplitude and 
may be further described with reference to FIG. 15 com- 
posed of FIGS. 15A, 15B, and 15C, respectively showing 
tlic training error, tcst uror, and percent error rate all given 5o 
as a root-mean square (RMS) quantity. FIG. 15 shows the 
performance result for an excitation amplitude of 1.0 wave 
and a crack-effect amplification factor f-1.0. Nine folds are 
required here for a 0% error rate; however, the error rate is 
down to 5% at 3 folds. 

In general, the performance of the feed-forward net 
improves for large vibration amplitudes and which may be 

FIGS. 16A, 16B, and 16C, respectively showing the asso- 
ciated training error, test error and percent error rate, 60 
wherein the trainiuig and test errors are given as RMS 
quantities and percent error rate is shown as a percent. FIG. 
16 shows the performance result from an excitation of 64.0 
waves and a crack-effect amplification factor of f-1.0. 

or even adequately. Furthermore, min-max table scaling 

The results of the testing m y  be firfiher &%rib& with 'g to 'mesa wbrationaPhcement- 
as lo 

The invention has 

modifications and 

I clainz: 
A of training an artificial neural network for 

struchue, said method 

a) m&g two hMvemge holograms of a v i b m w  
structure each comprised of a first d r  of pbrels; 

b) providing tiles as pixe)8 predetermined 
from the geometry of the vibrating structure; 
sub-mp]jng each of two ti-avmge holosnuns 

within said large pixels to extract a second number of 
pixel for each of said two time-average holograms; 

d) subtracting corresponding s m n d  pixels of each of said 
two time-average holograms to generate a sub-sampled 

pan- to a 
+& a m -  

prising said sub-sampled characteristic pa%m in accor- 
dance with said second pixels locations in an intensity 
range and provides a representative output to serve as 
a training reco& 

f )  repeating said steps a), b), c), d) and e) until a 
predetermined number of training records are obtained, 
and 

*ing damage of a 
comprising the of: 

55 

fiwther described with reference to FIG. 16 composed of characteristic pattern; 
e) &liverinp said mb--pl& 

mu& whjch =ales the 

Ingeneral, theunfoldedcase(N=O)doesnotperformwell 65 

does not help. Min-max scaling of the 64.0 waves, 61.0 
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g) delivering said predetermined number of training 
records to train an artificial neural network, said arti- 
ficial neural network W i g  trained to compare the 
characteristic patterns comprising said training records 
against each other with differences therebetween being 
indicative of detecting said damage of said vibrating 
Sti.llCture. 

2. The method according to claim 1, wherein said two 
time-average holograms are recorded on a charge-coupled- 
device (CCD) camera and wherein said first number of 
pixels comprise 307,200 pixels. 

3. The method according to claim 1, wherein said second 
number of pixels is in the range from about lOD0 to about 
10,Ooo. 

4. The method according to claim 3, wherein said second 
number of pixels is about 2000. 
5. The method according to claim 3, wherein said prede- 

termined number of training records is about lO?! of said 
number of said second pixels. 
6. The method according to claim 5, wherein said training 

records include two classes, respectively corresponding to 
damaged and undamaged vibrating structures and wherein 
said artificial network comprises a feed-forward neural 
network having a three layer architecture with first, second 
and third layers, respectively comprising about 1,OOO to 
10,000 nodes; about 10 to about 3 nodes and about 2 or 3 
nodes. 
7. The method according to claim 1, wherein said geom- 

etry has coordinates within said first pixels and said coor- 
dinates are set by a random number generator. 

8. The method according to claim 1, wherein said two 
time-average holograms differ by a reference beam phase 
shift of w. 

9. The method according to claim 1, wherein said folding 
routine comprises; 

a) determining a first intensity range of said second 

b) dividing said determined first intensity range into two 

c) increasing said two or more second intensity ranges to 

10. The method according to claim 9, wherein said second 
pixels are comprised of eight bits Which represent pixel 
values from 0 to 255 and which individual pixels satis@ the 
expression: 

number of pixels; 

or more second intensity ranges; and 

that of the first intensity range. 

Pixel vnlue=A cos [eJTo[2xK*S/ 

where A is a positive random quantity; 0 is random 
variable uniformly distributed from 0 to k, J, is the 
Bessel function of the first kind and zero order; K is the 
sensitivity vector; and 6 is the vibration displacement 
amplitude measured in wavelengths of light. 

11. A method of using an artificial neural network for 
detecting damage of a vibrating structure, said method 
comprising the steps of: 

a) recording two time-average holograms of a vibrating 
structure serving as a training-set and each comprised 
of a first numbcr of pixels; 

b) providuig tiles serving as large pixels predetermined 
from the geometry of the vibrating structure; 

c) sub-sampling each of two time-average holograms of 
said training set withiin said large pixels to extract a 
second number of pixel for each of said two time- 
average holograms; 

d) subtracting corresponding second pixels of each of said 
two timeaverage holograms of said training set to 
generate a sub-sampled characteristic pattern; 
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e) delivering said sub-sampled c h c t d s t i c  pattern of 

said training set to a folding routine which scales the 
second pixels mmprising said subampled character- 

et inasdance withsaid 

vides a representati 

f )  repeating said steps a), b), e), d) and e) until a 
predetermined number of training set records is 

records against each other with differences thembe.- 
tween being indicative of detectbg damage of said 
vibrating shuctm, said artificial neural network pro- 
viding a first output representative of the diffmnces 
between said training set records; 

h) recording two tirne-avemge holograms of said vibrat- 
ing structure serving as a test set and each comprised of 
a first number of pixels; 

i) providing said tiles serving as large pixels predeter- 
mined from the geometry of the vibrating structure; 

j) sub-sampling each of two time-average holograms of 
said test set within said large pixels to extract a second 
number of pixel for each of said two time-average 
holograms; 

k) subtracting corresponding second pixels of each of said 
two time-average holograms of said test set to generate 
a sub-sampled characteristic pattern 

1) delivering said sub-sampled charactexistic pattern of 
said test set to a folding routine which scales the second 
pixels comprising said sub-sampled characteristic pat- 
tern of said test set in accordance with said second 
pixels locations in an intensity range and provides a 
representative output to serve as a training mco& 

m) repeating said steps h), i), j), k), and 1) until a 
predetermined number of test set records are obtaioed; 

n) deliwering said test set records to said trained artificial 
neural network to provide a second repreaentative 
output from said trained artificial neural netwok, and 

0) said trained artificial neural network comparing said 
first representative output against said second repre- 
sentative output to determine if a dii€erence of a pre- 
determinedamount exists therebetween, saiddifference 
representing said detection of damage to said vibrating 
Structure .  

12. The method according to claim 11, wherein all of said 
two time-average holograms are recorded on a chatge- 
coupled-device (CCD) camera and wherein said first number 
of pixels comprise 307,200 pixels. 
13. The method according to claim 11, wherein said 

second number of pixels is in the range from about lo00 to 
about 10,000. 
14. The method according to claim 13, wherein said 

second number of pixels is about 2000. 
15. The method according to claim 14, wherein said 

predetermined number of training set records and test set 
records is about 1OOh of said number of second pixels. 
16. The method according to claim 15, wherein said 

t r a i n i n g s e t r e c o ~ a n d s a i d t e s t s e t ~ ~ ~ h ~ ~ d e t w o  
classes, resperctively corresponding to damaged and undam- 
aged vibrating structures and wherein said artificial network 
comprises a feed-forward neural network having a h e e  
layer architecture with first, second and third layers. 
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17. The method according to claim 11, wherein said 

18. The method according to claim 11, wherein said two 

19. The training method according to claim 18, wherein 

20. The method according to claim 11, wherein said 

a) determining a first intensity range of said second 

b) dividing said determined first intensity range into two 

c) increasing said two or more second intensity ranges to l5 comprising the Steps of 

24. The training method 

range from about 1,OOO to 

to claim 23, wharein 
geometry has coordiites within said first pixels and said said pixels of said training tic petEterns are m the 
coordinates are set by a random number generator. 

time-average holograms differ by a reference-beam phase s predetermined number of traini 
shift of It radians. said pixels of said characteristic 

25. The method "ording to claim 24, wherein said 

26. The 
said second number of pixels is about 2,000. training 

sponding to damaged and undamagd vibrating stm&ms 
10 and wherein said artificial network comprises a feed-hrward 

neural network havhg a three kiyer architecture with first, 

27. A methad of using an artificial tumal network for 
detecting damage of a vibrating structure, said method 

folding routine comprises; 

number of pixels; second and third layers. 

or more second intensity ranges; and 

that of the first intensity range. 
21. The method according to claim 20, wherein said pixels 

are comprised of eight bits which represent pixel values 
from 0 to 255 and which individual pixels satisfy the 
expression: 20 

Pixel value=A cos [6)Je[X.SJ 

where A is a positive random quantity; 0 is random 
variable uniformly distributed from 0 to 23E, J,, is the 
Bessel function of the first kind and zero order; K is the 25 
sensitivity vector; and 6 is the vibration displacement 
amplitude measured in wavelengths of light. 

22. A method of training an artificial neural network for 
detecting dainage of a vibrating calculated structure, said 3o 
method comprising the steps of: 

a) calculating a characteristic pattern of a vibrating struc- 
ture serving as a training pattem, said training charac- 
teristic pattern comprising pixels; 

b) delivering said characteristic pattern to a folding rou- 35 
tine which scales the pixels comprising said character- 
istic paltern in accordance with said pixels locations in 
an intensity range and provides a rcpresentative output 
to serve as a training record, wherein said folding 
routiiie comprises; i) determining a first intensity range 4o 
of said second number of pixels, ii) dividing said 
determined first intensity range into two or more sec- 
ond intensity ranges; and iii) increasing said two or 
more second intensity ranges to that of the first inten- 
sity range; and wherein said pixels are comprised of 45 
eight bits which represent pixel values from 0 to 255 
and which individual pixels satisfy the expression: 
Pixel vdue=A cos [6JJ,[2xK*SJ 

where A is a positive random quantity; 0 is random 
variable uniformly distributed from 0 to 2n; Jo is the 
Bessel function of the first k i d  and zero order; K is the 
sensitivity vector; and 6 is the vibration displacement 
amplitude measure in wavelength of light; 

c) repeating said steps a) and b) until a predetermined 
number of training records is obtained, and 

d) delivering said predetermined number of training 
records to train an artificial neural network thereof, said 
artificial neural network being trained to compare the 
characteristic patterns comprising said training records 
against each other with differences therebetween being 
indicative of detecting damage of said vibrating calcu- 
lated structure. 

23. The method according to claim 22, wherein said 
calculated characteristic patterns include a finite element 
model, a model of laser speckle effect and a model of 
sensitivity vector. 

a) calculating a characteristic pattern of a vibrating struc- 
ture serving as training pattern, said training character- 
istic pattern comprising pixels; 

b) delivering said characteristic pattern to a folding rou- 
tine which scales the pixels Comprising said character- 
istic pattern in accordance with said pixels locations in 
an intensity range and provides a representative output 
to serve as a training record, 

c) repeating said steps a) and b) until a predetermined 
number of training records is obtained, and 

d) delivering said predetermined number of training 
records to train an artificial neural network said artifi- 
cial neural network being trained to compare the char- 
acteristic patterns comprisiig said training records 
against each other with differences therebetween being 
indicative of detecting damage of said vibratiag calcu- 
lated structure, said artificial neural network providing 
a first output representative of the difference between 
said training records, 

e) calculating characteristic patteEns of a vibrating S ~ ~ I C -  
ture and serving as test characteristic patterns, said test 
characteristic patterns comprising pixels; 

f )  delivering said test characteristic patterns to a folding 
routine which scales the pixels comprising said test 
characteristic patterns in accordance with said pixels 
locations in an intensity range and provides represen- 
tative outputs to serve as test set records, 

g) repeating said steps e) and f )  until a predetmmined 
number of test set records is obtained; 

h) delivering said test set mords to said t r a i d  artificial 
neural network to provide a second representative 
output from said trained artificial ne& mtwok, and 

i) said trained artificial neulal network comparing said 
6rst representative output against said second repre- 
sentative output to determine if a difference of a pre- 
determined amount exists therebetween, said Werence 
representing detection of said damage to said vibmting 
structure. 

28. The method according to claim 27, wharein said 55 
calculated characteristic patterns include a finite element 
model, a model of laser speckle effect and a model of a 
sensitivity vector. 
29. The method according to claim 28, wherein said pixels 

60 of said training and test h ~ t e r i ~ t i ~  ptt- are in the 
range from about 1,OOO to about 10,OOO. 

second number of pixels is about 2,000. 
30. The method according to claim 29, wherein said 

31. The method "ording to claim 29, wherein said 
65 predetermined number of training set records and test set 

records is about lO?! of said pixels of said training and test 
characteristic patterns. 
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32. The method accordmg to claim 31, wherein said 
training set records and said test set reconlseach include two 
Clam% reSPe&elY CO~esponding to h g e d  andundam- 
aged vibrating structues and wherein said artificial network 
comprises a feed-forward neural network having a three 5 

33. The method according to claim 27, wherein said 
folding routine comprises; 

a) determining a first intensity range of said second 
number of pixels; 

b) dividing said determined fmt intensity range into two 
or more second intensity ranges; and 

34.Theraethodaccordingtoc~im33,urhereinsaidpnrels 
are comprised of eight bits wbich 
h m  0 to 255 and whioh indiv 
expression: 

layer architecture with fmt, second and third layers. Pixel vahrrA c01l [@]Jd2s~K4] 

where A is a positive random quantity; 9 is random 
variable unihmty distributed fmm 0 to 2 q  J,, is the 
Bessel function ofthe first kind and zem o & ~  K is 
sensitivity vector, and 8 is the vibration disp 
amplitude measured in wavelengths of light. 

c) increasing said two or more second intensity ranges to 
that of the first intensity range. * * * * *  
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